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Abstract: A method for the continuous detection of heart rate (HR) in signals acquired from
patients using a sensor mat comprising a nine-element array of fiber Bragg gratings during routine
magnetic resonance imaging (MRI) procedures is proposed. The method is based on a deep
learning neural network model, which learned from signals acquired from 153 MRI patients. In
addition, signals from 343 MRI patients were used for result verification. The proposed method
provides automatic continuous extraction of HR with the root mean square error of 2.67 bpm,
and the limits of agreement were -4.98–5.45 bpm relative to the reference HR.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The usefulness of fiber-optic vital sign sensors has been confirmed several times in laboratory
evaluations [1–5] and clinical assessments [6–8]. In particular, we have previously proved the
efficacy of a fiber-optic sensor system in monitoring patients using a magnetic resonance imaging
(MRI) scanner [9]. For patients with claustrophobic tendencies, an MRI examination is a stressful
experience due to the limited space around them, isolation from the environment, and noise
generated by the scanner [10]. A high level of anxiety usually manifests itself through elevated
heart activity and breathing [11,12]. By monitoring these indicators, the MRI operator can
control the current condition of the patient, decide whether to continue or stop the examination,
and recommend therapy to the patient to complete his/her MRI [13]. In addition to claustrophobic
patients, it is also recommended to monitor neonates, children, patients with disabilities, and
others who are unable or may not be able to communicate or use the alarm button during MRI
[14].

Fiber-optic technology is both immune to MRI electromagnetic field penetration and neutral
to imaging quality [15,16]. The simplest sensor designs with a single fiber Bragg grating (FBG)
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exhibit the ability to acquire respiratory curves and ballistocardiographic (BCG) signals from
the human body at full MRI compatibility [17,18]. FBGs are particularly attractive owing to
their excellent multiplexing and self-referencing capabilities, which allow for addressing several
sensing elements with a single optical fiber [19–21]. In the literature, details on sensors based
on arrays of 12 [22] and 40 [23] FBGs, as well as concepts of monitoring many individuals
with the use of FBGs connected in series [24] are provided. In general, the intention of the
multi-FBG sensor constructors was to improve the reliability by acquiring signals from a number
of localizations on the body and aggregating them into one noise-free signal used for the detection
of physiological parameters.

In 2010, Hao et al. proposed a sensor system employing 12 FBGs arranged in a 3 × 4 array,
connected in series, embedded in arc-shaped metal bridges, and deployed on a bed beneath
the mattress supporting a patient [22]. The authors performed laboratory evaluations on 10
subjects and showed a maximum error of ±1 respirations per minute (rpm) compared with
manual counting. They noted the sensor’s ability to measure HR; however, corroborating data
have not been made available to date. As with most of the information presented in this paper,
data processing is also briefly described. The initial stage of data processing included standard
blocks such as normalization and filtration, while further processing was based on wavelet
decomposition to remove signals other than those induced by respiration. Subsequently, an
autocorrelation block was applied to observe how the signal changed over time, and the RR
was determined from the pool of periodic components. The authors did not report whether the
multi-point measurement was used to automatically select the best signal for detecting RR or
only to present RR acquired from multiple locations in the patient.

In 2012, Allsop et al. presented an innovative system for respiratory function monitoring
comprising an array of 40 FBGs connected in series and embedded into a specially designed
textile vest [23]. The sensor system was distinguished by a high accuracy but was relatively
complex, and the authors aimed at advanced measurements of three-dimensional volumetric
changes of the human torso rather than common RR monitoring. The purpose of laboratory
evaluations was to test the sensing vest on a small group of subjects (n= 5) with a large anatomical
variation, and the vest was able to work with various sizes and changes in the torso. The study
yielded the volumetric error of 6% when comparing the volume data obtained from a spirometer
with the volume estimated using the synchronous data from the sensing vest. It is noteworthy
that the extensive algorithm allowed the authors to convert the wavelengths to curvatures and
generate the shape from the sensing array. By combining all of the curvature values, coupled
with the known spatial dimensions, the authors were able to generate the corresponding x, y,
and z coordinates of the sensor array and reconstruct the entire sensing array in real-time in
three-dimensional space. This enabled them to calculate the volume of the various sections of
the system and, consequently, observe the volumetric changes of the torso.

In 2017, Fajkus et al. developed a novel measuring probe based on two FBGs encapsulated
inside a polydimethylsiloxane (PDMS) polymer [24]. The polymeric shell was used to increase
the temperature sensitivity of the probe and ensure its nonreactivity to human skin. The use of two
FBG elements in the probe enabled the authors to measure strain and temperature simultaneously
if the FBGs differed in strain and thermal responsivities [25]. The authors achieved different
strain and thermal responsivities of the FBGs in the encapsulation process and through a specific
shape of the measuring probe. Laboratory evaluation included 10 subjects, and the results showed
maximum errors of approximately ±1 rpm and ±4 bpm compared with reference respiration and
ECG monitors, respectively. The authors also measured the body temperature of the subjects and
obtained the maximum error of 0.36% relative to the measurement with a reference thermometer.
Besides the possibility of measuring RR, HR, and body temperature simultaneously, another
advantage of the probe was the provision of fiber-optic connectors on both sides of the FBGs
connected in series. This allowed the authors to connect up to 32 probes in series, i.e., up to 64
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sensors, with a measurement window with a spectral width of approximately 1.9 nm assigned
to each probe. The authors presented the concept of a 4-channel system to interrogate 128
measuring probes (4 × 32), but its physical implementation has not been reported so far.

It is clear from the above discussion that techniques for efficient processing signals from
multi-FBG vital sign sensors are still just beginning to develop. In this paper, we introduce a
method for continuous detection of heart rate (HR), which allows for utilizing the advantages of
fiber-optic sensors with multi-point measurement. The innovative character of the presented work
is the combination of FBG sensing and deep learning temporal convolutional network (TCN)
signal processing for HR detection.

2. Methods

2.1. Sensor mat

To develop the detection method, we constructed a sensor mat based on a nine-element array of
FBGs (3 × 3), in which two of the FBGs were arranged orthogonally to the others, as shown in
Fig. 1(a). The FBGs are marked with numbers 1–9 in order from the lowest to the highest value
of the Bragg wavelength λB. The FBGs were attached to a springy Plexiglas board to perform a
multi-point measurement of strains induced by body movements, including those exerted on the
board by the work of the heart. Previously, we observed the best BCG signal acquisition when
using FBGs placed along the longitudinal axis of the body [26]. However, FBGs placed along
the transverse axis of the body may be crucial in the acquisition of the respiratory signal due to
the reduced contribution of heart-induced artifacts to the entire mechanically disturbed signal.
The variety in positioning of the FBGs relative to the body axes provides an opportunity to gain
wider insight into heart- and lung-induced body motions and enables the selection of the most
useful signals to detect HR and respiratory rate (RR). Nevertheless, the scope of this study is
focused on HR detection issues.

Using the phase mask technique [27], we inscribed nine FBGs into the cores of three sections
of single-mode fibers with the following configurations of the Bragg wavelengths and distances
between the FBGs:

• Section I (marked red in Fig. 1(a)): FBG #1: λB1 = 1526 nm, distance of 36 cm, FBG #2:
λB2 = 1530 nm.

• Section II (marked green): FBG #3: λB3 = 1538 nm, distance of 7 cm, FBG #4: λB4 = 1541
nm, distance of 7 cm, FBG #5: λB5 = 1546 nm, distance of 17 cm, FBG #6: λB6 = 1551
nm, distance of 10 cm, FBG #7: λB7 = 1556 nm.

• Section III (marked blue): FBG #8: λB8 = 1560 nm, distance of 7 cm; FBG #9: λB9 = 1564
nm.

The spectral distances of Bragg wavelengths were arranged to avoid the problem of spectral
overlapping during measurements. Prior to the inscription of the gratings, the optical fibers were
hydrogen-loaded at 110 bar at room temperature for two weeks to enhance their photosensitivity.
Then, the three series of FBGs were inscribed using a UV pulsed KrF excimer laser operating at
248 nm with the pulse energy of 3 mJ and pulse repetition of 500 Hz. The growth of the gratings
was monitored during the fabrication process to obtain similar reflectivity for each of the FBGs.
Finally, the optical fibers were annealed at 100 °C for 48 h to enhance the stability of the FBG
parameters [28].

The optical fiber ends were spliced together and protected with shrink tubes; hence, all the
FBGs were connected in series. This FBG assembly was arranged on a Plexiglas board with
dimensions of A4 paper and thickness of 2 mm. The FBGs were attached to the board using
epoxy adhesive. The fiber was looped in the case of excess. The loops and splice protectors were
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Fig. 1. Multi-point measurement mat: (a) design and (b) physical realization.

taped onto the board. The FBG series was spliced one-sidedly with a 10-m fiber cable pigtail
terminated with a fiber-optic connector for angled physical contact (FC/APC). The Plexiglas
board was inserted into a neoprene coating from which the fiber cable emerged, as shown in
Fig. 1(b). For a better view, the Plexiglas board is shown partially slid out of the neoprene
coating.

2.2. Experimental setup

A broadband superluminescent light-emitting diode (SLED) source by DenseLight Semiconduc-
tors, with the 3-dB wavelength range of 1515–1575 nm, was used to illuminate the FBGs through
an embedded optical circulator. Spectral signals reflected from the FBGs were analyzed using
the I-MON 256 monitor by Ibsen Photonics based on fused silica transmission gratings to split
the spectra onto an array of 255 diodes. The monitor provides real-time spectral measurement in
the range of 1525–1570 nm at a frequency of up to 6 kHz and wavelength fit resolution below
0.5 pm. Data from the diode array were transmitted via a USB connection to a laptop personal
computer (PC) and processed to recover the instantaneous positions of the FBG reflection peaks.
Deviations from the wavelength linearity of the diode array were corrected using polynomial
functions in the analysis software. Because the average wavelength between successive diodes in
the array is approximately 170 pm, and the full width at half maximum is approximately 300 pm
for each of the FBGs used in the sensor mat, a single FBG reflection peak is sampled using 6–8
wavelength values. 2-3 of these values correspond to the points laying on the peak within the
FWHM, and the remaining values correspond to the points laying on the slopes on either side of
the peak, i.e., beyond the FWHM. The analysis software determines the center frequency of an
FBG by fitting a Gaussian curve using the least-squares method. The time-dependent changes in
the Bragg wavelength are the input signals for further processing steps.
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The experimental setup was evaluated during routine MRI procedures in the configuration
shown in Fig. 2. In this study, 1.5-T and 3-T MRI units, specifically, model Vantage Elan 1.5T
and model Vantage Titan 3.0T, by Canon Medical Systems, were employed. Measurement data
acquired from MRI patients were used to develop a deep learning neural network model in the
range of network learning, validation, and testing. Deep learning is a widely used technique
for signal or image processing and is readily used in the field of biomedical photonics [29–31].
The basic assumption of the study was to limit the interference in MRI procedures to the
minimum required. Therefore, the only nonstandard action was to place the sensor mat under
the patient’s back. We did not decide to record physiological signals or parameters using a
reference measurement system, as this would require patient preparation and extend the MRI
procedures. The use of additional equipment, for example, MRI-compatible carbon electrodes,
could also adversely affect study-associated stress levels in patients. Instead, we tested the
proposed online HR detection method indirectly, using an additional developed auxiliary offline
method. First, we verified the offline method using HR detected from both the optical signal and
electrocardiographic (ECG) signal acquired from volunteers outside the MRI environment. In
this case, the HR detected from the ECG signal was the reference for the HR detected from the
optical signal coming from the sensor mat. Then, the HR obtained using the online method was
compared with that obtained using the previously verified offline method. In this case, the offline
method was used as a reference for the online method.

2.3. Detection method

The optical signal from the sensor mat was processed according to the scheme shown in Fig. 3
through the following main functional blocks:

• Preprocessing;

• Aggregation;

• Detection of characteristic points;

• Smoothing.

The original signals were recorded at the sampling rate of 1 kHz. Preprocessing included
downsampling by the factor of 8 with a decimation filter, prefiltering with a bandpass filter at
6 and 20 Hz cut-off frequencies, and normalization. The filters removed unwanted frequency
components such as slowly varying components originating from temperature changes as well as
high-frequency noise. The normalization procedure utilized moving-window normalization so
that the signal could be analyzed continuously. The parameters used for normalization, i.e., the
median and interquartile range (IQR), were determined in a moving window time range. The
median was subtracted from the input signal, whereas IQR was used to scale the values of the
signal. The normalization window length was a parameter of the method, which was set to 3 s
based on a series of trials.

The next processing block formed an aggregated detection function. A deep learning TCN was
used to generate a single trace from N = 9 input signals coming from the FBGs while removing
any noise that might appear on one of them. The actual HR detection was performed using an
aggregated detection function. Descriptions of the structure of the network and the learning
process are provided in sections 2.4–2.6.

The characteristic points are the notches occurring periodically in the analyzed signal, caused
by the mechanical activity of the heart. The greatest effect in the BCG signal recorded by the
FBGs was caused by the contraction of the ventricles [17]. The detection of the characteristic
points of the BCG waves allowed us to determine the duration of the cardiac cycle. A given value
of the analyzed signal was classified as a potential characteristic point if it was the maximum
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Fig. 2. Experimental setup within MRI procedures.

value within an interval of a specified width with the center at the time of occurrence of this
value. The width of this interval was derived from the dominant frequency component of the
signal, specifically, the pitch, according to the procedure described in [32].

In the smoothing block, the sequence of the characteristic points was converted into a sequence
of intervals, producing a tachogram. Then, the intervals were averaged with 3-element moving
average (MA).

2.4. Network building

As previously mentioned, we used TCN in the proposed detection method. This architecture
was distinguished by causal convolutions, so there was no information leakage from the future
to the past values of the input sequences [33]. Moreover, the TCN might accept a sequence of
any length and map it to an output sequence of the same length. An additional advantage of the
TCN architecture is the ability to create networks with a large history size, that is, the ability
of the network to look very distant from current sequence values. The data flow in a TCN is
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Fig. 3. Block diagram of signal processing

schematically shown in Fig. 4. To facilitate understanding of the operation principle, the network
is simplified to 4 layers and the kernel size 2, although the TCN model used in the study and
described in section 2.6 was of greater size and complexity. The figure shows the structure of the
information flow from the input sequence, through the successive layers to the output sequence,
including the time dependence of elements of the input sequence that form the receptive field of
the network. The scheme does not reflect the full complexity of the network, such as the number
of input sequences and filters in individual layers as well as the construction of residual blocks
that make up the network layers; all of these details are described in [33]. The main component
of the residual blocks are dilated convolutions. Their use is to obtain dilations between sequence
elements selected as the inputs to higher layers, and the dilations enable the network receptive
filed to grow proportionally to the square of the number of layers. The TCN can accept an input
sequence of any length, although the implementation of the network requires the provision of the
input sequence in portions to optimize computations.

During the study, the possibility of using the long short-term memory (LSTM) network as
well as the combination of TCN and LSTM architectures were also recognized. However, no
better results were obtained compared with those using only the TCNs.

In the proposed approach, the TCN architecture generated a detection function, i.e., a signal
in which characteristic points related to HR were detected. The input of the network was the
signals coming from the sensor mat, which had been preprocessed as described above. The TCN
architecture converted N = 9 input sequences (N is equal to the number of FBG elements) into
one output sequence, which had the same length as the input sequence.
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Fig. 4. Scheme of the data flow in a TCN

To develop a model that converts a set of signals coming from the FBGs into a single detection
function, the open-source machine learning library PyTorch was used. This environment is
extremely flexible because it is essentially an automatic differentiation system [34]. PyTorch
enables optimization of models with a user-defined structure described in the Python programming
language. This, in turn, allowed us to customize the target functions used in the learning process.
In cases where the task of the model was to generate a sequence that was similar to a given
target sequence, the first-choice function was the root mean square error (RMSE). In the
presented modification of the target function, the RMSE calculation step was preceded by the
synchronization of the signals using cross-correlation. This introduced an additional degree
of freedom during the optimization, as the model did not have to generate a signal that was
perfectly synchronized with the target signal. The resulting signal might be shifted in time by
some amount with respect to the target signal. The parameter of the learning process was the
time range in which synchronization was sought, i.e., the synchronization time. Additionally,
the initial portion of the waveforms was not included in the RMSE calculation. This allowed
the initial startup of the network. The length of this initial portion was defined as a divider of
the length of the compared sequences and was a parameter of the learning process, that is, the
idle divider. In the process of weight optimization of the neural network, the objective function
is differentiated. Therefore, in addition to the development of the signal synchronizing code
itself, it was necessary to provide the possibility of differentiating the code using the tape-based
automatic differentiation system of PyTorch.

Because the detection method was implemented in C# in the .Net platform environment, the
TCN model was used from the level of this platform via open neural network exchange (ONNX)
technology. ONNX is an open-source software library that allows for running neural network
models on various hardware and operating system environments, freely available on the ONNX
website and via GitHub.

2.5. Training set

To train the neural network, a method for creating target signals was developed. The software
used to create the training set had the form of the R computing environment script. Ultimately,
the network was to operate in the continuous (i.e., online) regime; however, when generating the
training set, this assumption was not necessary.
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In the first step of the training waveform preparation, each signal obtained from the sensor mat
was converted into a detection function. The block producing the detection function consisted of
a bandpass filter, derivative operation, square operation, and final low-pass filter. The cut-off
frequencies of the input bandpass filter were 3 and 10 Hz, whereas the final low-pass filter had
the cut-off frequency of 4 Hz. The next stage of processing was the detection of the local maxima
of the detection function, which was identical to the local maxima detection described in section
2.3.

The purpose of the next step in creating target signals was to determine the HR for each of
the detection functions that originated from the FBG signals. This procedure was implemented
in C# language in the form of a software library. The library was used as a tool from the level
of the R language script used to create the training set. The variability measure for each of the
obtained HR signals was calculated in the form of standard deviation and its quantile at the
level of 0.3. This constituted a threshold for the criterion of selection of signals used for further
processing steps; specifically, signals with greater variability than the limit value were rejected.
The justification for this procedure was that possible errors in signal detection usually significantly
increased the variability of the signal in relation to the real physiological signal. Subsequently,
the detection functions of the signals that had passed the selection were added together to form
an aggregated detection function, and then the local maxima of this aggregated function were
detected. The generated sequence of maxima, that is, a set of potential characteristic points, was
an input for the pulse generator. The generator created an impulse train, constructed from Dirac
delta functions, which were then filtered with a low-pass filter to create the target signal for the
learning process. This signal was similar to the detection function; however, it did not contain
fluctuations in the amplitude of the pulses, and the signal values between the pulses were very
close to 0.

Each element of the training set consisted of 16-s portions of the input signals and the target
signal that resulted from the operation of the procedure described above. There were 153 sets of
inputs and the same number of target outputs. The inputs for the developed model were portions
of recordings acquired from 153 patients (98 females and 55 males) aged 48.80± 15.43 (M± SD)
years using the FBG-based sensor mat placed under the patients’ backs during routine MRI
procedures.

2.6. Training

The Adam optimizer was employed during the training process (beta1= 0.9, beta2= 0.999) [35].
The network-based models were tested with many combinations of network sizes and other
metaparameters. The final model was developed using the values listed in Table 1. The learning
rate is a standard tuning parameter of the optimization algorithms, and determines how much
the model should be changed at each iteration of the learning process when the gradient of the
loss function is estimated while moving toward the minimum of this function. The validation
fraction defined the fraction of the validation set count in the total number of learning cases. The
batch size was the number of cases taken to determine the value of the objective function in
each iteration of the learning process. The dropout is the probability of random zeroing of a
network parameter. The clip is a gradient clipping-by-norm method threshold that prevents large
change in the weight values during training when the loss function landscape forms a cliff. The
kernel size, layers, and filters per layer parameters define the shape of the TCN model [33]. The
synchronization time is the width of the signal synchronization interval in the objective function
computation in seconds. The idle divider was the length of the initial fragment ignored when
calculating the RMS in the objective function computation, defined as a divider of the length of
the compared sequences.



Research Article Vol. 12, No. 12 / 1 Dec 2021 / Biomedical Optics Express 7799

Table 1. Metaparameters of the learning process

Parameter Value

Learning rate 0.0005

Validation fraction 0.2

Batch size 32

Dropout 0.25

Clip 0.1

Kernel size 6

Layers 6

Filters per layer 16

Synchronization time 0.23

Idle divider 4

3. Results

Verification of the HR detection method proposed for the multi-FBG-based sensor was carried
out in two stages. In the first stage, we compared the HR traces obtained from the optical signal
using the auxiliary offline method with those obtained from the ECG signal. In the second
stage, we used the auxiliary offline HR detection method to verify the method for continuous
HR detection, i.e., the online method. Thus, in both stages, an essential element of the analysis
was the auxiliary offline method, which was first verified and then used as a reference for the
proposed online method. The successive steps of the auxiliary offline HR detection method were
similar to the procedure of creating target signals for the training set for the machine learning
process described in section 2.5, except that the obtained characteristic point sequence was not
used as a trigger for the pulse generator, but was directly converted into an HR signal.

In the auxiliary offline method, the signals obtained from the sensor mat were converted into
the detection function, followed by the detection of local maxima of the detection function and
determination of the HR signal expressed in beats per minute (bpm). For all of the obtained HR
signals, measures of their variability were calculated in the form of standard deviations and their
quantiles at the level of 0.3. Traces with a variability lower than the determined threshold were
added together to create an aggregated detection function. Next, the characteristic points were
detected in this function, then, the correction of the characteristic points sequence was applied,
and, consequently, the corrected points were used for the final HR detection. The correction
was based on the analysis of the intervals between the points, particularly their variability.
The variability, expressed as the standard deviation, was checked in the queue of the k last
characteristic points. For each of these points, the variability of intervals, expressed as a standard
deviation, including the considered point and its nearest neighboring points (k points in total),
was computed and compared with the variability excluding a given point. If the ratio of these
values indicates a significant decrease in variability after removing the midpoint, the point is
removed. It was assumed that a characteristic point was removed if the variability decreased to
2/3 of the initial value and below. The number of points used for the variability computation k
was a metaparameter of the method and was set to five.

The first stage of the validation was conducted using an ECG recorder as a reference to verify
the auxiliary offline method. ECG signals were acquired from 16 subjects (2 females and 14
males) aged 25.56± 10.03 (M±SD) years using an ECG module of the medical monitoring
subsystem described in [36]. Figure 5. shows the scatter plot, or 2D histogram, of the HR
values obtained using the auxiliary offline method against the reference ECG-based HR values.
The count of results is assigned to hexagonal bins; the number of bins in both the vertical and
horizontal directions is set to 120. The bins contain HR counts corresponding to the detected
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heartbeats. Since the presented method was developed to measure HR continuously, we treated
HR as a signal. There may be a different time interval between each heartbeat and the previous
one. Thus, each successive reading of the HR value may differ from the previous one. An HR
recording during the MRI procedure for one subject contains many HR values corresponding to
the detected heartbeats. The longer the registration, the more HR values. The number of results
in each bin was coded according to the color of the points. The bins shown in Fig. 5 contain HR
counts, the number of which corresponds to the number of detected heartbeats.

Fig. 5. Scatter plot (2D histogram) of the HR values obtained by the auxiliary offline
method against the reference HR values determined from the ECG signal.

Figure 6 shows the modified Bland–Altman plot. As in the classic Bland–Altman plot, the
X-axis is the average of the compared values, and the Y-axis is their difference. The individual
points of the graph correspond to the number of results in hexagonal bins; the number of
hexagonal bins in both the vertical and horizontal directions is set to 120. The number of results
in each bin was coded according to the color of the points. The Bland–Altman plot shows
the limits of agreement at -4.51 and 4.31 bpm with the mean error of -0.10 bpm. The RMSE
obtained from comparing the auxiliary offline method results and HR computed from the ECG
acquisitions is 2.25 bpm.

The auxiliary offline HR detection method was used in the second stage of testing to verify the
online method. A total of 343 MRI patients (220 females and 123 males) aged 49.29± 14.50
(M±SD) years were included in this stage. It should be noted that these were different patients
than those whose recordings were used to learn the network. The experimental protocol complied
with the Declaration of Helsinki and was approved by the Ethics Committee of the Military
Institute of Aviation Medicine (Decision 10/2015). The study was performed in the Laboratory
of Computed Tomography and Magnetic Resonance in Bialystok, a part of TMS Diagnostyka Sp.
z o.o., in accordance with the relevant guidelines and regulations. The subjects were informed of



Research Article Vol. 12, No. 12 / 1 Dec 2021 / Biomedical Optics Express 7801

Fig. 6. Bland-Altman plot of the HR values obtained from the auxiliary offline method
against the reference HR values determined from the ECG signal.

Fig. 7. Scatter plot (2D histogram) of the HR values obtained by the online method against
the reference HR values obtained by the previously verified auxiliary method.
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Fig. 8. Bland-Altman plot of the HR values obtained by the online method against the
reference HR values obtained by the previously verified auxiliary method.

the purpose and nature of the study and signed their informed consent for study participation and
the use of physiological parameters in the data analysis. The interference with MRI procedures
was minimal; it only included the presence of the sensor mat under the patients’ backs.

The analysis performed to verify the method included 368,954 HR values. Figure 7. shows
the scatter plot of the HR values obtained using the online method against the reference HR
values obtained with the previously verified auxiliary method. The count of results is assigned to
hexagonal bins; the number of bins in both the vertical and horizontal directions is set to 120.
As previously, the bins contain HR counts, the number of which corresponds to the number of
detected heartbeats.

Figure 8 shows the modified Bland–Altman plot. As in the classic Bland–Altman plot, the
X-axis is the average of the compared values, and the Y-axis is their difference. The individual
points of the graph correspond to the number of results in hexagonal bins; the number of
hexagonal bins in both the vertical and horizontal directions is set to 120. The number of results
in each bin was coded according to the color of the points. The chart also shows the limits of
agreement at -4.98 and 5.45 bpm, and the mean error of 0.23 bpm. The RMSE obtained by
comparing the HR results of the online method and the auxiliary offline method is 2.67 bpm.

When analyzing Figs. 7 and 8, particular attention should be paid to the color of the bins.
Although most of the points (i.e., measurements) are near the x= y line, there are few points with
significant error, which are unfortunately well highlighted. This is the result of the color coding
of the number of measurements as even a bin of one measurement is displayed in the plot. The
color of these outliers corresponds to the lowest number of cases. The bins corresponding to
low errors most often have a color that reflects a greater number of measurements. The same
effect is seen in Figs. 5 and 6; however, it is less pronounced owing to the overall lower number
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of measurements. The excess of points above the zero-error line, i.e., prevalence of positive
errors, noticeable in Fig. 8, does not have any deeper physical sense, as there are very few points
compared to those with low error within the limits of agreement range.

4. Discussion

The multiplication of FBG elements has long been known and used in distributed monitoring of
the condition of mechanical structures of bridges, tunnels, or chimneys [37,38] as well as the
electrical parameters of submersible pumps, wind turbines, or power networks [39]. Although
FBG-based vital sign sensors have been developed in recent years, only a few research groups
have proposed multi-FBG sensor solutions. As shown in the “Introduction” section, it is difficult
to compare the HR detection method proposed in this paper with the methods presented by other
authors [22–24]. This is mainly due to the fact that those authors had different goals and did not
try to solve the problems associated with the automatic selection of the best signal for detecting
the parameter needed. Our experience shows that the whole process of HR detection in FBG
signals is complex, mainly due to small levels of the amplitude of the notches related to the
mechanical activity of the heart in relation to the noise and resolution of the measurement system.
The use of multiple sources of signals, or multi-point measurement by an array of FBGs, is one of
the ways to mitigate this disadvantage. However, construction of multi-FBG sensors contributes
to the need for development of an effective method for aggregating information from multiple
sources, which allows the removal of noise and enhances the useful characteristics of the signals.

In the process of designing the sensor mat, the most important aspect was to match the
FBG parameters to the specification of the FBG monitor and to minimize the risk of errors in
the HR detection method. Thus, the Bragg wavelengths of all the FBGs had to be within the
operating range of the FBG monitor of 45 nm, and could not exceed this range due to heart- or
lung-induced strains experienced by the FBGs. On the other hand, the spectral distance between
the neighboring FBGs as well as their distribution along the fiber were designed to avoid spectral
overlapping when the subject was lying on the sensor mat, and the heart-induced signals were
acquired from the subject. A series of preliminary tests allowed for determining the spectral
parameters of the FBGs. The grating reflectivity and bandwidth were selected according to the
technical specification of the FBG monitor and based on the authors’ experience to properly apply
the Gaussian fit, and finally to obtain the best possible accuracy of wavelength measurement.
It is worth to mention that the presented method does not need very accurate absolute Bragg
wavelength measurement because the HR signal is derived from relative Bragg wavelength
changes. Hence, the designed parameters are not crucial until the spectra do not overlap each
other and the reflectivity spectra of FBGs are not saturated and thus are no longer Gaussian.

The amplitude of the signal strongly depends on the axis along which an FBG is attached.
Better results are achieved when the BCG signal is recorded by an FBG located along the
longitudinal axis of the body as the heart significantly expands and contracts along longitudinal
and sagittal axes. The expansion and contraction of the heart along the transverse axis of the
body is less significant. This confirms both the well-known results from the 50s [40] and more
recent research on three-dimensional ballistocardiography in microgravity [41–43]. Therefore,
7 of 9 FBGs of the sensor mat are oriented longitudinally on the Plexiglas board. 2 FBGs are
oriented transversely in order to reduce contribution of heart-induced artifacts to the respiratory
signal that is planned to be studied in the future.

In the study, a particular effort was made to ensure the repeatability of measurement and
reproducibility of the sensor fabrication process. Therefore, the phase mask technique was used
to inscribe the Bragg gratings into the fiber core, which currently provides the best reproducibility.
In this technique, the Bragg wavelength of a grating is determined by the phase mask period, and
its repeatability does not exceed± 0.2 nm. During the grating growth process in the phase mask
technique, the bandwidth and reflectivity are precisely controlled by monitoring the reflection
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spectrum of the FBG. These parameters can be tailored with a deviation of no more than a few
percent. The measurement repeatability of the Bragg wavelength using the I-MON 256 monitor
is on average 3 pm and does not exceed the value of 5 pm.

The Plexiglas board was machine cut, while the sensor mat was assembled by hand and hence
every sensor manufactured in this way may be slightly different. However, in the process of
optimizing the FBG layout, we manufactured a number of sensors, including several pieces with
almost identical layout and parameters of the FBGs, and we did not notice any differences in
their operation significant for the quality of measurements. The satisfactory repeatability of
measurement was confirmed by the number of subjects involved in the study.

The method and evaluation had limitations; The method is limited by the possibility of
obtaining details of the neural network operation. The neural network will always remain a
“black box” that can respond in an unpredictable manner to some input data. An example of
such a reaction is the autopilot system in Tesla’s car, in which a deep neural network identifying
the lane marking in the camera images directed the car into the wrong lane when three small
stickers were placed in an intersection [44,45]. Thus, neural networks can be tricked through
“adversarial” images. For the presented measurement system, intentionally generating artifacts
in the network input signals seems unlikely, but it is possible to imagine a situation in which
the waveform generating unstable network operation arises naturally. However, the fact that
the network performance was verified in a large series of trials, in which the network received
data unknown during the learning process, suggests that the risk of unexpected operations is
negligible.

Another limitation is related to the verification of the proposed method using an auxiliary
method. As mentioned in the “Methods” section, this was due to the lack of a reference signal
measurement during routine MRI procedures, in which 496 recordings were obtained. However,
a high agreement of the auxiliary method, i.e., RMSE of 2.25 bpm, was achieved compared
with the measurements obtained with ECG being the standard for precise HR determination.
Therefore, the approach correctly verified the proposed method in the presented MRI application.

The proposed method for detecting HR developed using machine learning allowed us to
achieve satisfactory results for the automatic continuous extracting of HR using the all-dielectric
array of FBG sensing elements with RMSE of 2.67 bpm and the limits of agreement of -4.98
and 5.45 bpm comparing with the auxiliary method. The proposed method does not require
significant computing power; hence, a commercial off-the-shelf personal computer is sufficient
for its application. Thus, alongside the inherent electromagnetic immunity of fiber-optic sensors,
the method can be easily integrated into an unobtrusive continuous monitoring system of MRI
patients.
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